skip to main content


Search for: All records

Creators/Authors contains: "Nelson, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This engineering curriculum is designed for students in 6-8 grade where they learn about the concept of polarity and mixing through the phenomenon of oil separating from water by simulating an oil spill that demonstrates the impact of these molecular qualities on the environment. In the first part of the activity, students get familiar with the concept of polarity and how it causes oil to float on water through molecular models and demonstrations. The second part entails a simulation of an oil spill in the ocean, where students are given a variety of tools and will engineer their own solutions to clean up the spill through trial and testing. Finally, they discuss the real-world methods used to clean up oil spills, and their impact on the environment. This engineering curriculum aligns to Next Generation Science Standards. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Objectives

    Long‐tailed macaques (Macaca fascicularis) are widely distributed throughout the mainland and islands of Southeast Asia, making them a useful model for understanding the complex biogeographical history resulting from drastic changes in sea levels throughout the Pleistocene. Past studies based on mitochondrial genomes (mitogenomes) of long‐tailed macaque museum specimens have traced their colonization patterns throughout the archipelago, but mitogenomes trace only the maternal history. Here, our objectives were to trace phylogeographic patterns of long‐tailed macaques using low‐coverage nuclear DNA (nDNA) data from museum specimens.

    Methods

    We performed population genetic analyses and phylogenetic reconstruction on nuclear single nucleotide polymorphisms (SNPs) from shotgun sequencing of 75 long‐tailed macaque museum specimens from localities throughout Southeast Asia.

    Results

    We show that shotgun sequencing of museum specimens yields sufficient genome coverage (average ~1.7%) for reconstructing population relationships using SNP data. Contrary to expectations of divergent results between nuclear and mitochondrial genomes for a female philopatric species, phylogeographical patterns based on nuclear SNPs proved to be closely similar to those found using mitogenomes. In particular, population genetic analyses and phylogenetic reconstruction from the nDNA identify two major clades withinM. fascicularis: Clade A includes all individuals from the mainland along with individuals from northern Sumatra, while Clade B consists of the remaining island‐living individuals, including those from southern Sumatra.

    Conclusions

    Overall, we demonstrate that low‐coverage sequencing of nDNA from museum specimens provides enough data for examining broad phylogeographic patterns, although greater genome coverage and sequencing depth would be needed to distinguish between very closely related populations, such as those throughout the Philippines.

     
    more » « less